With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.
translated by 谷歌翻译
在恶性原发性脑肿瘤中,癌细胞浸润到周围的脑结构中,导致不可避免的复发。对周围区域的浸润性异质性(活检或切除可能是危险的区域)的定量评估对于临床决策很重要。以前关于表征周围区域浸润性异质性的工作使用了各种成像方式,但是已经探索了细胞外无水运动限制的信息。在这里,我们通过使用基于扩散的张量成像(DTI)的自由水量分数图来表征一组独特的人工智能(AI)标记,从而捕获肿瘤浸润的异质性,从而捕获肿瘤的异质性。首先通过利用胶质母细胞瘤和脑转移的广泛不同的水扩散性能作为在周围肿瘤组织中有和没有浸润的区域的区域,首先提取了一种新型的基于体素的深度学习周围微环境指数(PMI)。均匀高PMI值的局部枢纽的描述性特征被提取为基于AI的标记,以捕获渗透性异质性的不同方面。提出的标记物应用于两个临床用例,对275个成人型弥漫性神经胶质瘤的独立人群(4级)分析,分析异氯酸盐 - 脱水酶1(IDH1) - wildtypes之间的生存持续时间以及带有IDH1-杀剂的差异。我们的发现提供了一系列标记物作为浸润的替代物,可捕获有关周围微观结构异质性生物学潜在生物学的独特见解,使其成为与生存和分子分层有关的预后生物标志物,并具有潜在的适用性在临床决策中。
translated by 谷歌翻译
纵向脑磁共振成像(MRI)含有病理扫描的登记是由于组织外观变化而挑战,仍然是未解决的问题。本文介绍了第一脑肿瘤序列登记(Brats-Reg)挑战,重点是估计诊断患有脑弥漫性胶质瘤的同一患者的术前和后续扫描之间的对应关系。 Brats-Reg挑战打算建立可变形登记算法的公共基准环境。关联的数据集包括根据公共解剖模板,为每个扫描的大小和分辨率策划的DE识别的多机构多参数MRI(MPMRI)数据。临床专家在扫描内产生了广泛的标志标记点,描述了跨时域的不同解剖位置。培训数据以及这些地面真相注释将被释放给参与者来设计和开发他们的注册算法,而组织者将扣留验证和测试数据的注释,并用于评估参与者的集装箱化算法。每个所提交的算法都将使用几个度量来定量评估,例如中位绝对误差(MAE),鲁棒性和雅可比的决定因素。
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译
Solving portfolio management problems using deep reinforcement learning has been getting much attention in finance for a few years. We have proposed a new method using experts signals and historical price data to feed into our reinforcement learning framework. Although experts signals have been used in previous works in the field of finance, as far as we know, it is the first time this method, in tandem with deep RL, is used to solve the financial portfolio management problem. Our proposed framework consists of a convolutional network for aggregating signals, another convolutional network for historical price data, and a vanilla network. We used the Proximal Policy Optimization algorithm as the agent to process the reward and take action in the environment. The results suggested that, on average, our framework could gain 90 percent of the profit earned by the best expert.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
Recently, Smart Video Surveillance (SVS) systems have been receiving more attention among scholars and developers as a substitute for the current passive surveillance systems. These systems are used to make the policing and monitoring systems more efficient and improve public safety. However, the nature of these systems in monitoring the public's daily activities brings different ethical challenges. There are different approaches for addressing privacy issues in implementing the SVS. In this paper, we are focusing on the role of design considering ethical and privacy challenges in SVS. Reviewing four policy protection regulations that generate an overview of best practices for privacy protection, we argue that ethical and privacy concerns could be addressed through four lenses: algorithm, system, model, and data. As an case study, we describe our proposed system and illustrate how our system can create a baseline for designing a privacy perseverance system to deliver safety to society. We used several Artificial Intelligence algorithms, such as object detection, single and multi camera re-identification, action recognition, and anomaly detection, to provide a basic functional system. We also use cloud-native services to implement a smartphone application in order to deliver the outputs to the end users.
translated by 谷歌翻译
Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.
translated by 谷歌翻译
In recent years, we have seen a significant interest in data-driven deep learning approaches for video anomaly detection, where an algorithm must determine if specific frames of a video contain abnormal behaviors. However, video anomaly detection is particularly context-specific, and the availability of representative datasets heavily limits real-world accuracy. Additionally, the metrics currently reported by most state-of-the-art methods often do not reflect how well the model will perform in real-world scenarios. In this article, we present the Charlotte Anomaly Dataset (CHAD). CHAD is a high-resolution, multi-camera anomaly dataset in a commercial parking lot setting. In addition to frame-level anomaly labels, CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor. This is especially beneficial for skeleton-based anomaly detection, which is useful for its lower computational demand in real-world settings. CHAD is also the first anomaly dataset to contain multiple views of the same scene. With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset including person annotations, collected from continuous video streams from stationary cameras for smart video surveillance applications. To demonstrate the efficacy of CHAD for training and evaluation, we benchmark two state-of-the-art skeleton-based anomaly detection algorithms on CHAD and provide comprehensive analysis, including both quantitative results and qualitative examination.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译